5457963
9780553805406
Chapter One Who's Doing Your Thinking for You? Recommendations make life a lot easier. Want to know what movie to rent? The traditional way was to ask a friend or to see whether reviewers gave it a thumbs-up. Nowadays people are looking for Internet guidance drawn from the behavior of the masses. Some of these "preference engines" are simple lists of what's most popular. The New York Times lists the "most emailed articles." iTunes lists the top downloaded songs. Del.icio.us lists the most popular Internet bookmarks. These simple filters often let surfers zero in on the greatest hits. Some recommendation software goes a step further and tries to tell you what people like you enjoyed. Amazon.com tells you that people who bought The Da Vinci Code also bought Holy Blood, Holy Grail. Netflix gives you recommendations that are contingent on the movies that you yourself have recommended in the past. This is truly "collaborative filtering," because your ratings of movies help Netflix make better recommendations to others and their ratings help Netflix make better recommendations to you. The Internet is a perfect vehicle for this service because it's really cheap for an Internet retailer to keep track of customer behavior and to automatically aggregate, analyze, and display this information for subsequent customers. Of course, these algorithms aren't perfect. A bachelor buying a one-time gift for a baby could, for example, trigger the program into recommending more baby products in the future. Wal-Mart had to apologize when people who searched for Martin Luther King: I Have a Dream were told they might also appreciate a Planet of the Apes DVD collection. Amazon.com similarly offended some customers who searched for "abortion" and were asked "Did you mean adoption?" The adoption question was generated automatically simply because many past customers who searched for abortion had also searched for adoption. Still, on net, collaborative filters have been a huge boon for both consumers and retailers. At Netflix, nearly two-thirds of the rented films are recommended by the site. And recommended films are rated half a star higher (on Netflix's five-star ranking system) than films that people rent outside the recommendation system. While lists of most-emailed articles and best-sellers tend to concentrate usage, the great thing about the more personally tailored recommendations is that they diversify usage. Netflix can recommend different movies to different people. As a result, more than 90 percent of the titles in its 50,000-movie catalog are rented at least monthly. Collaborative filters let sellers access what Chris Anderson calls the "long tail" of the preference distribution. The Netflix recommendations let its customers put themselves in rarefied market niches that used to be hard to find. The same thing is happening with music. At Pandora.com, users can type in a song or an artist that they like and almost instantaneously the website starts streaming song after song in the same genre. Do you like Cyndi Lauper and Smash Mouth? Voila, Pandora creates a Lauper/Smash Mouth radio station just for you that plays these artists plus others that sound like them. As each song is playing, you have the option of teaching the software more about what you like by clicking "I really like this song" or "Don't play this type of song again." It's amazing how well this site works for both me and my kids. It not only plays music that each of us enjoys, but it also finds music that we like by groups we've never heard of. For example, because I told Pandora that I like Bruce Springsteen, it created a radio station that started playing the Boss and other well-known artists, but after a few songs it had me grooving to "Now" by Keaton Simons (and because of on-hand quick links, it's easy to bAyres, Ian is the author of 'Supercrunchers How Thinking by Numbers Is the New Way to Be Smart', published 2007 under ISBN 9780553805406 and ISBN 0553805401.
[read more]