968893

9780792378990

Image Segmentation and Compression Using Hidden Markov Models

Image Segmentation and Compression Using Hidden Markov Models
$158.63
$3.95 Shipping
List Price
$225.00
Discount
29% Off
You Save
$66.37

  • Condition: New
  • Provider: LightningBooks Contact
  • Provider Rating:
    85%
  • Ships From: Multiple Locations
  • Shipping: Standard, Expedited (tracking available)
  • Comments: Fast shipping! All orders include delivery confirmation.

seal  

Ask the provider about this item.

Most renters respond to questions in 48 hours or less.
The response will be emailed to you.
Cancel
  • ISBN-13: 9780792378990
  • ISBN: 0792378997
  • Publisher: Springer

AUTHOR

Li, Jian, Gray, Robert M.

SUMMARY

In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processing, among which segmentation and compression are topics of this book. Image segmentation is a process for dividing an image into its constituent parts. For block-based segmentation using statistical classification, an image is divided into blocks and a feature vector is formed for each block by grouping statistics of its pixel intensities. Conventional block-based segmentation algorithms classify each block separately, assuming independence of feature vectors. Image Segmentation and Compression Using Hidden Markov Models presents a new algorithm that models the statistical dependence among image blocks by two dimensional hidden Markov models (HMMs). Formulas for estimating the model according to the maximum likelihood criterion are derived from the EM algorithm. To segment an image, optimal classes are searched jointly for all the blocks by the maximum a posteriori (MAP) rule. The 2-D HMM is extended to multiresolution so that more context information is exploited in classification and fast progressive segmentation schemes can be formed naturally. The second issue addressed in the book is the design of joint compression and classification systems using the 2-D HMM and vector quantization. A classifier designed with the side goal of good compression often outperforms one aimed solely at classification because overfitting to training data is suppressed by vector quantization. Image Segmentation and Compression Using Hidden Markov Models is an essential reference source for researchers and engineers working in statistical signal processing or image processing, especially those who are interested in hidden Markov models. It is also of value to those working on statistical modeling.Li, Jian is the author of 'Image Segmentation and Compression Using Hidden Markov Models' with ISBN 9780792378990 and ISBN 0792378997.

[read more]

Questions about purchases?

You can find lots of answers to common customer questions in our FAQs

View a detailed breakdown of our shipping prices

Learn about our return policy

Still need help? Feel free to contact us

View college textbooks by subject
and top textbooks for college

The ValoreBooks Guarantee

The ValoreBooks Guarantee

With our dedicated customer support team, you can rest easy knowing that we're doing everything we can to save you time, money, and stress.