4985181
9780817632182
This monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related concept of Dirac cohomology, which is defined using Dirac operators, is a far-reaching generalization that connects index theory in differential geometry to representation theory. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. Key topics covered include: * Proof of Vogan's conjecture on Dirac cohomology * Simple proofs of many classical theorems, such as the Bott?Borel?Weil theorem and the Atiyah?Schmid theorem * Dirac cohomology, defined by Kostant's cubic Dirac operator, along with other closely related kinds of cohomology, such as n-cohomology and (g, K)-cohomology * Cohomological parabolic induction and $A_q(\lambda)$ modules * Discrete series theory, characters, existence and exhaustion * Sharpening of the Langlands formula on multiplicity of automorphic forms, with applications * Dirac cohomology for Lie superalgebras An excellent contribution to the mathematical literature of representation theory, this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.Huang, Jing-Song is the author of 'Dirac Operators in Representation Theory' with ISBN 9780817632182 and ISBN 0817632182.
[read more]